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Following the 19th century program by Dirichlet, Helmholtz, Thomson, and Hertz 
to obtain a completely kinematic interpretation of classical mechanics by the 
nonlinear Euler equations, an attempt is made to interpret the gauge and 
equivalence principles hydrodynamically in the framework of the Planck 
aether model. 

1. INTRODUCTION 

Following the successful reduction of the laws of thermodynamics to 
classical Newtonian mechanics, attempts were made by several leading 19th 
century scientists, notably Dirichlet, Helmholtz, Thomson, and Hertz, to 
reduce the laws of classical mechanics to the kinematics of a hypothetical 
aether described by the nonlinear Euler equation of an incompressible friction- 
less fluid. 2 These attempts preceded Einstein's program to give these laws a 
geometric meaning. Conceptually, kinematic and geometric laws are quite 
similar, suggesting that the pre-Einstein approach for a kinematic interpreta- 
tion is ultimately not too far from Einstein's approach for a geometric interpre- 
tation. In the kinematic interpretation the dynamical laws of Newtonian 
mechanics are reduced to boundary conditions at the surface of the vortex 
cores formed in the frictionless incompressible aether, whereas in general 
relativity they are reduced to the geodesic motion in a curved space-time. 
Thomson showed that small-amplitude waves propagating through a vortex 
lattice formed in this aether can describe the electromagnetic waves of Max- 
well's equations. With Maxwell's equations Lorentz invariance followed as 
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a dynamic symmetry for objects held together by electromagnetic forces. But 
a problem common to all those aether models was that the aether must be 
massless, because an aether endowed with mass would lead to gravitational 
fields which are not observed. A solution for this problem was given by 
Einstein, who showed that Lorentz invariance could be understood as a 
symmetry of a four-dimensional space-time continuum, eliminating the need 
for an aether altogether. 

The path taken by Einstein received considerable support through the 
success of his general theory of relativity (which generalized the Lorentz 
transformations between inertial frames of reference to those between nonin- 
ertial frames) because it led to an unexpected solution of the long-standing 
problem of finding the correct equations for the gravitational field, where 
others before him, notably Maxwell, had failed. Notwithstanding Einstein's 
success, the idea of an aether sustained its appeal, as the only physically 
simple way to understand how a wave can propagate through a vacuum void 
of ordinary matter, which in the absence of a medium filling this vacuum is 
not possible in the absolute space of Newtonian mechanics. 

The hypothetical aether of classical physics eliminated by Einstein in 
his special theory of relativity somehow reemerged in quantum mechanics 
as the zero-point energy of the vacuum. This zero-point energy has a divergent 
o~3-frequency spectrum, the only one invariant under a Lorentz transformation. 
Therefore, unless this zero-point energy is cut off at some high frequency 
(resp. small length), it would lead to an aether of infinite mass density. 
Invoking general relativity by cutting it off at its Schwarzschild radius of 

10 -33 cm, which is equal the Planck length, the vacuum mass density would 
be of the order ~ 1095 g/cm 3. Because this huge mass density would manifest 
itself in very large gravitational fields (obviously not observed), there must 
be something fundamentally wrong in our thinking. 

Whereas in special relativity the need for an aether is eliminated, a kind 
of aether can be introduced in general relativity through the cosmological 
constant in Einstein's gravitational field equations, which acts like a pressure, 
and hence like a pressure-generating medium. Since the quantum mechanical 
zero-point energy of the vacuum has just the property of such a medium, it 
leads to a cosmological constant. Empirically, the cosmological constant is 
very small, if not exactly equal to zero, whereas the quantum mechanical 
zero-point energy predicts a very large cosmological constant. 

According to Weinberg (1989, 1992) the smallness, if not vanishing, of 
the cosmological constant, remains one of the outstanding unsolved problems 
both of elementary particle physics and of cosmology. One way by which 
this problem could be solved is supersymmetry, where the divergent zero- 
point energy contributions from the boson and fermion fields can be made 
to cancel, but supersymmetry is not realized in nature, at least not at the low 
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energies of everyday life. It does not really help if supersymmetry is broken 
below some high energy, because it would leave the zero-point energy uncom- 
pensated up to this energy. At best, it might be broken below -100 GeV 
(the highest energy attainable with presently available particle accelerators), 
but even then it still would imply a vacuum mass density of -10  t4 g/cm 3 
with a correspondingly large cosmological constant. This mass density is of 
the same order of magnitude as the mass density produced by the static 
nonvanishing Higgs field in the spontaneously broken gauge theory of the 
WSG model, which, too, should lead to large gravitational fields. 

In an attempt which is reminiscent of past attempts to explain the various 
null results of prerelativity physics by a number of miraculous cancellations, 
each requiring a different mechanism, a miraculous cancellation of the differ- 
ent contributions to the vacuum energy coming from the zero-point and 
Higgs-field energies of various fields, some of them associated with hypotheti- 
cal particles which have never been observed, has been proposed. In Einstein's 
special relativity all the miraculous cancellations were explained to result 
from one underlying universal principle. In light of this historical precedent, 
one should expect that the vanishing of the cosmological constant should 
rather be contained in the structure of the underlying fundamental field 
equation from which all elementary particles and their interactions are to be 
derived, and not be the result of a number of miraculous cancellations. 3 

Even though supersymmetric theories may not appear to be realized in 
nature, they can nevertheless provide us with a hint for the ultimately correct 
theory. In these theories the positive zero-point energy of a boson field is 
compensated by a negative energy contribution from a fermion field, with 
which it is supersymmetrically associated, and one might expect a likewise 
cancellation from two fields in the final theory. The reason for the cancellation 
in supersymmetric theories is that the Dirac equation possesses, besides its 
positive energy solution, also those of negative energy. It was shown by 
SchrOdinger (1930, 1931) that because these negative energy states mix 
with those of positive energy, a Dirac particle executes a "Zitterbewegung" 
(quivering motion) explaining its spin as the angular momentum of this 
motion. The interpretation of this "Zitterbewegung" by H/3nl and Papapetrou 
(1939a, b, 1940) and Bopp (1943, 1946, 1948) was that through the admixture 
of negative energy states, and hence negative mass states, a Dirac spinor can 
be described as a mass pole with a superimposed positive-negative mass 
dipole (pole-dipole particle). Such a pole--dipole particle moves on a helical 
trajectory where it reaches the velocity of light, and it is this helical motion 
which is Schr~dinger's "Zitterbewegung." The negative energy states of the 
Dirac equation, though, cannot be directly observed, because all the negative 

3This view has been expressed by Feynman (1988). 
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energy states are occupied with antiparticles interpreted as holes in a "sea" 
of occupied negative energy states. The "Zitterbewegung" analysis strongly 
supports the physical reality of negative masses, but the hypothesis for the 
existence of negative masses is not without problems. One reason is that 
an electrically charged particle having a negative mass could become self- 
accelerating by gaining negative kinetic energy through the emission of 
electromagnetic radiation. The same would happen even for an uncharged 
negative mass particle by the emission of gravitational radiation. A mass 
dipole formed from a positive and equal negative mass would be self-acceler- 
ating along a straight line, but this would not be the case for a pole-dipole 
particle, which follows a helical trajectory. 

If the zero-point energy is cut off at its gravitational radius of ~10  -33 
cm, it would lead to a vacuum densely occupied with Planck-mass black 
holes (Wheeler, 1968; Hawking, 1978). To compensate the huge mass density 
of ~ 1095 g/cm 3 such an assembly would have, it was suggested by Sakharov 
(1968) that the vacuum might be filled with an equal number of compensating 
"ghost particles." However, for the compensation to work, these "ghost 
particles" must have a negative mass, resulting in unwanted self-accelerating 
runaway solutions. To overcome this difficulty, it has been proposed by the 
author (Winterberg, 1994) that the vacuum is densely filled with an equal 
number of positive and negative Planck masses but which (unlike in Sak- 
harov's proposal) carry neither an electric nor a gravitational, or any other 
charge, and are for this reason not the source of long-range fields. It is 
rather assumed that they interact locally through contact-type delta-function 
potentials, very much as in Heisenberg's nonlinear spinor theory. Under this 
hypothesis all long-range fields are explained quantum mechanically through 
collective excitations of the hypothetical Planck aether, with the charge phe- 
nomenon having its cause in the zero-point fluctuations of the Planck masses. 
Quantizing the collective modes then leads to a spectrum of quasiparticles, 
representing the spectrum of observed elementary particles. If the collective 
modes obey the classical wave equation, special relativity follows as a 
dynamic symmetry for quasiparticles held together by forces transmitted 
through these waves. It is for this reason possible to assume that the Planck 
masses themselves are described by an exactly nonrelativistic law of motion. 
Because the particle number in a nonrelativistic theory is conserved, the 
Planck masses play the role of a kind of indestructible Leibnizian monads, 
with the property of the Leibnizian monads to possess "no windows," 
reflected in the property of the Planck masses not to be the source of any 
long-range field. Assuming that there is an equal number of positive and 
negative Planck masses, the average mass density of the Planck aether van- 
ishes exactly, and with it the cosmological constant. The Planck aether can 
therefore accommodate the requirement of a massless aether, with the mass- 



Equivalence and Gauge in Planck-Scale Aether Model 269 

lessness not in the absolute but only in the average. With the masslessness 
in the average only, wave propagation through the Planck aether is possible. 

Mathematically, the model is described by two coupled nonlinear nonrel- 
ativistic operator field equations 

h 2 
ih 0t~+ = 7- _ _  V 2 1 j I  + _+_ 2hcr~(t~t~+_ - t~tzt~)t~+ (1.1) 

Ot 2mp 

w h e r e  mp rp are the Planck mass and Planck length, derived from the two 
Planck relations Gm~ = h c  and mprpc = h, where G is Newton's gravitational 
constant. The positive and negative mass components of the Planck aether, 
represented by the operators d~+_, obey the canonical commutation relations 

[t~+(r)~b~(r')] = ~(r - r ' )  

[t~+(r)~_~(r')] = [d~( r )~( r ' ) ]  = 0 (i.2) 

In the form given by (1.1) the proposed fundamental law resembles Heisen- 
berg's nonlinear spinor field equation, except that (1.1) is exactly nonrelativis- 
tic. Unlike Heisenberg's theory, which had to assume an indefinite metric in 
Hilbert space, the state space constructed from (1.1) is always positive deft~ 
nite. 4 

Solutions for the quantized field equation (1.1) are in general difficult 
to obtain. But for a densely packed assembly of positive and negative Planck 
masses, with each mass component in a superfluid state represented by a 
completely symmetric wave function for equal Planck masses, a quite accurate 
picture of the possible solutions can be obtained from the Hartree-Fock 
approximation. There the field operators are replaced by their expectation 
values, with the product of three different field operators expressed by the 
product of the expectation values as follows (tp = (t~), ~p* = (+t)): 

The factor 2 in the expectation value for the products of identical particles 
comes from the exchange interaction, which for the delta-function interaction 
potential is equal to the direct interaction. In the Hartree-Fock approximation, 
(1.1) therefore becomes 

h z 
ih Oq~----E+- =-T- - -  V2~p+ +_ 2hcr2(2tp*tpz  - q~*tp~)~pz (1.4) 

Ot 2rap 

4The additional problem encountered by Heisenberg (1966) in his nonlinear spinor equation, 
which contains no mass term, was that there can be no interaction without a mass term. This 
problem does not arise for (1.1), which contains the Planck mass in a very fundamental way. 
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Making the substitutions 

n• = ~ r 1 7 7  

n+v+ = ~ -  
ih 

[q~Wp+ - qo-~v~p~] (1.5) 
2rap 

one can bring (1.4) into its hydrodynamic form 

Ov+ 1 
- + (v~ �9 V)v_+ = -2c2~V(2n+_ - nT_) + --VQ_+ 

Ot mp 

0/t+ 
- + V . (n_+v_+)  = 0 ( 1 . 6 )  

Ot 

where 

h2 V2 x/-~_+ 
Q+ - (1.7) 

2mp ~_+ 

is the quantum potential, and where n_ are the number of Planck masses per 
unit volume. In the vacuum ground state, it is assumed that n ~ = 1/2r 3, 
consistent with the assumption of a vacuum densely packed with an equal 
number of positive and negative Planck masses. 

In its linearized approximation, (1.6) leads to scalar compression waves 
propagating with the velocity of light. In addition, (1.6) has solutions which 
are quantized vortices, with the vortex core radius equal to a Planck length. 
Because the vacuum has an equal number of positive and negative Planck 
masses, a sponge of densely spaced positive and negative mass vortices can 
be formed from the ground state without the expenditure of energy. By 
drawing an analogy to classical hydrodynamics, a spacing of these vortex 
filaments about 10 3 times larger than their core radius is suggested. For the 
Planck aether, this leads to an energy scale about 10 3 times smaller than the 
Planck energy, in good agreement with the conjectured GUT scale of elemen- 
tary particle physics. 

A vortex sponge leads to two additional types of wave modes propagated 
by the vortex sponge lattice: an antisymmetric mode, which can describe 
Maxwell's electromagnetic waves, and a symmetric one, which can describe 
Einstein's gravitational waves. Because the filaments of the vortex lattice are 
coupled by the scalar compression waves, these transverse waves propagate 
with the velocity of  light. Furthermore, a lattice of vortex rings has a resonant 
energy at -- +__ 10 ~2 GeV, and resonances from the positive and negative masses 
of the vortex lattice can form excitonic solutions which have the property of 
Dirac spinors. Through the quantized vortices, charge can be explained to 
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result from the zero-point fluctuations of Planck masses bound in the vor- 
tex filaments. 

Even though both Maxwell 's and Einstein's field equation can be derived 
from the Planck aether model, one would like to understand how the principle 
of  equivalence (fundamental for Einstein's field equations) and the gauge 
principle (fundamental for gauge theories) can be understood within the 
framework of this model. 

2. THE ORIGIN OF GRAVITATIONAL M A S S  

A Planck mass bound in a vortex filament has the quantum mechanical 
zero-point energy 

E ~ h c / r p  (2.1) 

leading to a kinetic energy density within the filament given by 

~ h c / r  4 (2.2) 

The zero-point fluctuations generate a field of  virtual phonons having their 
source in the Planck mass. I f  the strength of this phonon field is g, its energy 
density at the distance r = rp is 

_ g2 (2.3) 

hence 

g ~ ( h c ) ' / Z / r ~  = , / G m p / r ~  (2.4) 

the latter because G m  2 = hc .  According to this result, Newton's  law of 
gravitational attraction, and with it the property of  gravitational mass, has 
its origin in the zero-point fluctuations of the Planck masses bound in the 
vortex filaments. For the attraction to make itself felt, both the attracting and 
attracted mass must be composed of Planck masses bound in vortex filaments. 
The gravitational field generated by a mass M, different from mp, is the sum 
of all masses mp bound in vortex filaments. 5 Its gravitational charge is 
M and the gravitational field generated by it is 

g = ,J - -GM/r  2 (2.5) 

The force exerted by g on another mass m (of charge ,/-Gm), which like M 

5 Arbitrarily small fractions of mp are possible for an assembly consisting of an equal number 
of positive and negative Planck masses, with the positive kinetic energy of the positive Planck 
masses different from the absolute value of the negative kinetic energy of the negative 
Planck masses. 
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is composed of masses m v bound in vortex filaments, is 

F = ~-Gm X g = G m M / r  2 (2.6) 

The gravitational interaction therefore is the result of an attractive scalar 
phonon field in which the phonons propagate with the velocity of light. But 
because the vortex sponge propagates tensorial waves at larger wavelengths, 
simulating those derived from Einstein's gravitational field equations, the 
gravitational field appears to be tensorial in the low-energy limit. 

3. THE ORIGIN OF INERTIAL MASS AND THE PRINCIPLE OF 
EQUIVALENCE 

The equivalence of the gravitational and inertial masses can most easily 
be demonstrated for the limiting case of an incompressible Planck aether. To 
prove the principle of equivalence in this limit, we use the equations for an 
incompressible frictionless fluid 

div v = 0 (3.1) 
dv 

p-~- = - grad p 

Applied to the positive mass component of (1.6), we have p = nmp, n = 

1/2r~, hence p = nmpc 2. In the limit of an incompressible fluid, the pressure 
p plays the role of a Lagrange multiplier, with which the incompressibility 
condition div v = 0 in the Lagrange density function has to be multiplied 
(Sommerfeld, 1950). The force density resulting from a pressure gradient is 
for this reason a constraint force. The same is true for the inertial forces in 
general relativity, where they are constraint forces imposed by curvilinear 
coordinates in a noninertial reference system. 

We now show that the inertial force density p dv /d t  in Euler's equation 
can be interpreted as a constraint force resulting from the interaction with 
the Planck masses filling all of space. Apart from those regions occupied by 
the vortex filaments, the Planck aether is everywhere superfluid and must 
obey the equation 

curl v = 0 (3.2) 

With the incompressibility condition div v = 0, the solutions of Euler's 
equation for the superfluid regions are solutions of Laplace's equation for 
the velocity potential t~ 

V2t~ = 0 (3.3) 

where v = -g rad  ~. A solution of (3.3) is solely determined by the boundary 
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conditions on the surface of the vortex filaments, as can be also seen more 
directly in the following way: With the help of the identity 

one can obtain an equation for p by taking the divergence on both sides of 
Euler's equation 

v2(P + ~ )  = div(v x curl v) (3.5) 

Solving for p, one has (up to a function of time depending on the initial 
conditions, but which is otherwise of no interest) 

P - v2 I div(v x curl v) 
p 2 J 4 , r r l r - • l  dr '  (3.6) 

Inserting this expression forp into Euler's equation, it becomes an integrodif- 
ferential equation 

dv = v ( ~ )  + v f div(v X curl v) dr' (3.7) 
dt 4,rr lr  - r '  I 

If the superfluid Planck aether could be set into uniform rotational 
motion of angular velocity to, one would have 

v = rco (3.8) 

and hence 

17(o2/21I = rto 2 (3.9) 

but because for a superfluid curl v = 0, the velocity field (3.8) is excluded. 
If set into uniform rotation, a superfluid rather sets up a lattice of parallel 
vortex filaments, possessing the same average vorticity as a uniform rotation. 
If space would be permeated by such an array of vortices, it would show up 
in an anisotropy which is not observed. Other nonrotational motions leading 
to nonvanishing V(vZ/2) terms involve expansions or dilations, excluded for 
an incompressible fluid. Therefore, the only remaining term on the r.h.s, of 
(3.7) is the integral term. It is nonlocal and purely kinematic. Through it a 
"field" is transmitted to the position r over the distance tr - r ' l .  One can 
therefore write for the incompressible Planck aether 

__dv = V i dr '  
div(v X curl v) 

d ,  _ ( 3 1 0 )  

As Einstein's equation of motion for a test body, which is the geodesic in a 
curved four-dimensional space, equation (3.10) does not contain the mass of 
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the test body. It is for this reason purely kinematic, giving a kinematic 
interpretation of inertial mass. 

The integral of the r.h.s, of  (3.10) must be extended over all regions 
where curl v ~ 0. These are the regions occupied by vortex filaments. In 
the Planck aether, the vortex core radius is the Planck length rp, with the 
vortex having the azimuthal velocity 

v~ = c(rp/r), r > rp (3.11) 
= 0 ,  r < r p  

Using Stokes' theorem for a surface cutting through the vortex core and 
having a radius equal to the core radius r v, one finds that at r = rp 

curlzv = 2C/rp (3.12) 

A length element of the vortex tube equal to rp makes the contribution 

frp diV(v • curl v) dr' ~ 1 ~rp(V 
4wlr  - r '  I 4 ~ ] r  - r '  I x curl v ) .  df (3.13) 

where f d f  ~- 27rr~ is the surface element for a length rp of the vortex tube. 
Therefore, each such element rp makes the contribution 

fr div(v X curl v) dr '  ~- rpc2 (3.14) 
p 4"rrlr - r'[ [r - r'[ 

The contribution to dv/dt of an element located at r '  along r - r '  then is 

dv rpC 2 
- ( 3 . 1 5 )  

dt Ir - r'[ 2 

Because of Gm~ = hc and mprpC = h ,  this can be written as follows: 

dv Gmp 
- ( 3 . 1 6 )  

dt [r - r'l 2 

demonstrating the origin of the inertial mass in the gravitational mass of all 
the Planck masses in the universe bound in vortex filaments. 

To obtain a value for the inertial mass of a body, its interaction with all 
the Planck masses in the universe must be taken into account. By order of 
magnitude, this sum can be estimated by placing all these Planck masses at 
an average distance R, with R given by 

R = GM/c 2 (3.17) 

and where M is the mass of the universe, equal to the sum of all Planck 
masses. Relation (3.17) follows from general relativity, but it can also be 
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justified if one assumes that the total energy of the universe is zero, with the 
positive rest mass energy M c  2 equal to the negative gravitational potential 
energy - G M 2 / R .  Summing up all contributiong to dv/dt, one obtains from 
(3.16) and (3.17) 

d_~ t G M  _ c 2 
R 2 R (3.18) 

as in Mach's principle. Because the gravitational interaction is solely deter- 
mined by the gravitational mass, the equivalence of the inertial and gravita- 
tional mass is obvious. 

We take notice that according to Mach's principle, inertia results from 
a "gravitational field" set up by an accelerated motion of all the masses in 
the universe relative to an observer. It is for this reason that the hypothetical 
gravitational field of  Mach's principle must act instantaneously with an infi- 
nite speed. By contrast, the inertia in the Planck aether is due to the presence of 
the Ptanck masses filling all of  space relative to which an absolute accelerated 
motion generates inertia as a purely local effect, not as a global effect as in 
Mach's principle. Notwithstanding this difference in explaining the origin of 
inertia in the Planck aether model and in Mach's principle, the latter can be 
recovered from the Planck aether model provided not only all the masses in 
the universe are set into an accelerated motion relative to an observer, but 
with them the Planck aether as well, or what is the same, the physical vacuum 
of quantum field theory. Only then is complete kinematical equivalence 
established, and only then would Mach's principle not require action at 
a distance. 

The conclusions made for an incompressible Planck aether can be easily 
generalized to a compressible Planck aether, at least in the limit in which 
the equations of  motions are linearized. 

To show this, we start from the Euler and continuity equations of a 
compressible fluid 1} O v +  V - v x c u r l v =  - - V p  

Ot p 

Op + div pv 0 
Ot 

Linearizing with regard to p and p, by putting 

(3.19) 

P --~ Po + P, P --~ Po + P (3.20) 
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where P/P0 ~ 1 and P/Po ~ 1, one has 

1} 0 v +  V - v x c u r l v =  - - - V p  
Ot P0 

a p + P0 div v = 0 (3.21) 
at 

where it was assumed that Vpo = 0. From the second of these equations, 
one has 

1 Op 1 09 Op 1 Op 
div v - - - (3.22) 

Po Ot P00p Ot p0 C20t 

where because o f p  = nmpc 2 = pc 2, one has Op/Op = c 2. Taking the divergence 
on both sides of  the first of (3.21) leads to (10 ) [ 

ca~-~ + V 2 P - - = d i v  v x c u r l v - V  (3.23) 
P0 

As before, we omit the V(val2) term and obtain from (3.23) the retarded 
potential solution 

p _ f [div(v x curl v)]retdr, (3 .24) 
p0 3 4~rlr - r'l 

Reinserted into Euler 's equation, we finally have 

dv = V f [div(v x curl v)]ret dr '  
(3.25) 

dt J 4wlr  - r '  I 

taking the place of  (3.10). Therefore, all previous results remain unchanged 
as long as no localized rapid large-scale changes in the cosmic matter distribu- 
tion occur. 

4. I N T E R P R E T A T I O N  OF GAUGE INVARIANCE 

In Maxwell 's equations the electric and magnetic fields can be expressed 
through a scalar potential �9 and a vector potential A: 

1 OA 
E - grad �9 (4.1) 

c Ot 

H = curl A 

E and H remain unchanged under the gauge transformation of the potentials 
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O' = ~  l O f  

c Ot 

A' = A + grad f (4.2) 

where f is called the gauge function. Imposing on ~ and A the Lorentz 
gauge condition 

1 0qb 
- - - + d i v A  = 0  (4.3) 
c Ot 

the gauge function must satisfy the wave equation 

1 02f+ Vzf = 0 (4.4) 
C 20t  2 

In an electromagnetic field the force on a charge e is 

---- - v •  
c 

[,OA 1 ] 
= e grad qb + - v  x curl A (4.5) 

c Ot c 

By making a gauge transformation of the Hamilton operator in the Schr~3dinger 
wave equation, the wave function transforms as 

�9 ' = �9 exp (4.6) 

leaving invariant the probability density ~ * ~ .  
To give gauge invariance a hydrodynamic interpretation, we compare 

(4.5) with the force acting on a test body of mass m placed into the moving 
Planck aether. This force follows from Euler's equation and is 

dv 0v + grad - v x curl v (4.7) 
F = m--~  = mkO t --~ 

Complete analogy between (4.5) and (4.7) is established if one sets 

m u2 

mc 
A - v (4.8) 

e 
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F = m[ ~ 
Lot 

For  (4.10) we write 

According to (4.2) and (4.6), �9 and A shift the phase  of  a Schr6dinger  wave  by  

e I t2 ~qz = ~ ~P dt 
t 1 

er 
g~P = - h c  A . d s  (4.9) 

The corresponding expressions for a gravitat ional  field can be directly 
obtained f rom the equivalence principle (Hund, 1948). I f  Ov/Ot is the accelera-  
t ion and r the angular  velocity of  the universe relative to a reference sys tem 
assumed to be at rest, the inertial forces in this sys tem are 

r - o~ x (o~ x r)  - /" x 2oJ]  (4.10) + & • 
d 

where  

With 

one has 

F o[ +1 .] = - v x (4.11) 
c 

l~=--OV+~xr-~  x (~ x r) 
at 

I~I = - 2 c ~  (4.12) 

curl(& x r)  = 2& 

d iv ( -o~  x ( ~  x r))  = 2oJ 2 

div I?I = 0 

1 0I:I ---+curll~ = 0  
c Ot 

I~ and I2I can be derived f rom a scalar and vector  potential  

~ _  10A 
c Ot grad 

I~I = curl 

Appl ied to a rotating reference system, one has 

(4.13) 

(4.14) 

(4.15) 
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1 (to • r)  2 

�9 ~ : - c ( ~  X r) 

o r  

_ U 2 

2 

2 7 9  

(4.16) 

(replacing the Lorentz gauge) 

4 a ~  
c at 
- - -  + div A = 0 

aA 
- 0 ( 4 . 1 8 )  

at 

with the gauge transformation for 60 and A 

@ ' = d o  

A' = A + g r a d f  (4.19) 

where f has to satisfy the potential equation 

Vzf = 0 (4.20) 

For a stationary gravitational field the vector potential changes the phase 
of the Schr6dinger wave function according to 

�9 ' = �9 exp (4.21) 

leading to a phase shift on a closed path 

m ~   .ds 

= mh ~ v" ds (4.22) 

Apart from the factor m/e, this is the same as (4.8). 
For weak gravitational fields produced by slowly moving matter, Ein- 

stein's linearized gravitational field equations permit the gauge condition 

= - c v  (4.17) 
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5. COMPARISON OF THE PHASE SHIFTS CAUSED BY THE 
MAGNETIC AND GRAVITATIONAL VECTOR POTENTIALS 

In the hydrodynamic interpretation suggested by the Planck aether 
hypothesis, the phase shifts caused by either the magnetic or the gravitational 
vector potential result from a circular flow of the Planck aether. The principle 
of equivalence can precisely relate this circular flow to the angular velocity 
of a rotating platform. According to (4.17), one has for the gravitational 
vector potential in a rotating frame of reference 

A = - tocr (5.1) 

with to the phase shift given by (4.22). One can apply (4.22) to the Sagnac 
effect for photons of frequency v, by putting mc 2 = hp  = 2,rrhv, with the 
result that 

( .  

8q~ = (2~p/C 2) ~ v 'd s  

= 2co('rrr2) �9 (2"rrv/c 2) (5.2) 

the same as predicted without quantum mechanics. 
The formula (4.22) can also be applied to a neutron interferometer placed 

on a rotating platform. An experiment of this kind, using the rotating earth 
as in the Michelson-Gale version of the Sagnac experiment, was actually 
carried out (Staudenmann, 1980), confirming the theoretically predicted 
phase shift. 

We now compute the phase shift (4.9) by a magnetic vector potential. 
To make a comparison with the gravitational vector potential in the Sagnac 
effect, we consider the magnetic field produced by an infinitely long cylindri- 
cal solenoid of radius R. Inside the solenoid the field is constant, vanishing 
outside. If the magnetic field inside the solenoid is H, the vector potential is 

1 
A~ = ~ Hr, r <  R 

1 FIR 2 
- , r > R ( 5 . 3 )  

2 r 

According to (4.9), the vector potential on a closed path leads to the phase shift 

e 
8q~ = - - h c  Hnvr2' r < R 

_ e 

hc  HwR2'  r > R (5.4) 
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As noted by Aharonov and Bohm (1959), there is a phase shift for r > R, 
even though for r > R, H = 0 (because for r > R, curl A = 0). 

Expressing A by (4.8) through v, the hypothetical circular aether velocity, 

e 
v ~ - 2 m c  H r ,  r < R 

e H R  2 

2 m c  F 
r > R (5.5) 

one sees that inside the coil the velocity profile is the same as in a rotating 
frame of reference, having outside the coil the form of a potential vortex. If  
expressed in terms of the aether velocity, the phase shift becomes 

~q~ = ~- v . d s  (5.6) 

the same as (4.22) for the vector potential created by a gravitational field, 
and hence the same as in the Sagnac experiment and neutron interference 
experiment. But for the magnetic vector potential the aether velocity can easily 
become much larger than in any rotating platform experiment. According to 
(5.5), the velocity reaches a maximum at r --= R, where it is 

IVmaxl _ e R R  
c 2 m c  2 (5.7) 

For electrons this is I Vmax I/c ----- 3 • 10 -4 H R ,  where H is measured in Gauss. 
For H = 104 G, this would mean that V~ax = C for R ~> 0.3 cm. 6 I f  this 
would be the same aether velocity felt on a rotating platform, it would 
lead to an enormous centrifugal and Coriolis field inside the coil, obviously 
not observed. 

The Planck aether model can give a simple explanation for this paradox. 
The Planck aether consists of  two superfluid components, one composed of 
positive Planck masses and the other one of negative Planck masses. The 
two components can freely flow through each other, making possible two 
configurations, one where both components are corotating and one where 
they are counterrotating. The corotating configuration is realized on a rotating 
platform, where it leads to the Sagnac and neutron interference effects. This 
suggests that in the presence of a magnetic vector potential the two superfluid 
components are counterrotating. Outside the coil, where curl A = 0, the 

nit thus seems to follow that the aether can reach superluminal velocities for rather modest 
magnetic fields. In this regard it must be emphasized that in the Planck aether model all 
relativistic effects are explained dynamically, with the aether itself obeying an exactly nonrela- 
tivistic law of motion. The aether can for this reason assume superluminal velocities. 
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magnetic energy density vanishes, implying that the magnitudes of both 
velocities are exactly the same. Inside the coil, where curl A 4: 0, there must 
be a small imbalance in the velocity of the positive over the negative Planck 
masses to result in a positive energy density. 

In Maxwell's theory, the electric charge satisfies a conservation law, as 
does the number of the Planck masses. The electric charge can for this reason 
only reside in one species of Planck masses, for negative charges in the 
positive Planck masses, for positive charges in the negative Planck masses, 
or vice versa. Since the origin of the electric charge would still be the 
zero-point fluctuations of the Planck masses bound in the quantized vortex 
filaments, it becomes plausible why the electromagnetic coupling constant 
e2/hc ~- 1/137 is not too far away from the gravitational coupling constant 
of the Planck masses Gm~/hc = 1. By comparison, the gravitational coupling 
constant of a Dirac spinor of mass m, Gm2/hc, is typically 44 orders of 
magnitude smaller. In the Planck aether model a Dirac spinor is an exciton 
formed from the large resonances, one having positive and the other one 
having a negative mass. Because the gravitational field couples to both 
positive and negative masses, the sum of which can be very small, the 
gravitational coupling constant for a Dirac spinor can for this reason become 
much smaller than its electromagnetic coupling constant. 

6. ANALOGIES BETWEEN EINSTEIN-GRAVITY AND NON- 
ABELIAN GAUGE FIELD THEORIES 

In Einstein's gravitational field theory the force on a particle is expressed 
by the Christoffel symbols. They are obtained from first-order derivatives of 
the ten potentials of  the gravitational field represented by the ten components 
of the metric tensor. From the Christoffel symbols the Riemann curvature 
tensor is structured by the following symbolic equation 

R = Curl F + F | F (6.1) 

The expression for the field strength, and hence force, in Yang-Mills field 
theories is symbolically given by (g is a coupling constant with the dimension 
of electric charge) 

W = Curl A - g-1A | A (6.2) 

It, too, has the form of  a curvature tensor, albeit not in space-time, but in 
internal charge space, in QCD for example, in color space. It was Riemann 
who wondered if in the small there might be a departure from the Euclidean 
metric. The Yang-Mills field theories have answered this question in a quite 
unexpected way, not as a non-Euclidean structure in space-time, but rather 
as one in charge space, making itself felt only in the small. 
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Comparing (6.1) with (6.2), one can from a gauge-field-theoretic point 
of view consider the F~l as gauge fields. If the curvature tensor vanishes, 
they can be globally eliminated by a transformation to a pseudo-Euclidean 
Minkowski space-time metric. One may for this reason call the F~,t pure gauge 
fields which for a vanishing curvature tensor can always be transformed away 
by a gauge transformation. Likewise, if the curvature tensor in (6.2) vanishes, 
one may globally transform away the gauge potentials. 

From the Newtonian point of view, contained in Einstein's field equa- 
tions, the force is always related to the first derivative of a potential. Apart 
from the nonlinear term in (6.2), this is also true for a Yang-Mills field 
theory. But with the inclusion of the nonlinear terms, (6.2) has also the 
structure of a curvature tensor. In Einstein's theory the curvature tensor 
involves second-order derivatives of the potentials, whereas in a Yang-Mills 
field theory the curvature tensor in charge space involves only first-order 
derivatives of the potentials. This demonstrates a displacement of the hierar- 
chy for the potentials with regard to the forces. A displacement of hierarchies 
also occurs in fluid dynamics by comparing Newton's point particle dynamics 
with Helmholtz's line vortex dynamics (Sommerfeld, 1950). Whereas in 
Newton's point particle dynamics the equation of motion is mi ~ = F, the 
corresponding equation in Helmholtz's vortex dynamics is Ixi" = F. Therefore, 
whereas in Newtonian mechanics a body moves with constant velocity in 
the absence of a force, it remains at rest in vortex dynamics. Whereas what 
is at rest remains undetermined in Newtonian mechanics, it is fully determined 
in vortex dynamics, where at rest means at rest with regard to the fluid. The 
same would have to be true with regard to the hypothetical Planck aether. 

The hydrodynamics of the Planck aether model suggests that the hierar- 
chical displacement of the curvature tensor for Einstein and Yang-Mills fields 
is related to the hierarchical displacement of the vortex equation of motion 
if compared with the Newtonian equation of motion. This idea can be explored 
a little further. To do this we consider the force between two magnetic dipoles 
separated by the distance r. Their dipole moments m~ and m2 have the 
magnetic vector potentials 

A~ - m l x e r m 2 ~ e r 
r2 , A2 - r2 (6.3) 

where er is perpendicular to ml and m2. The magnetic force on m2 by ml 
is given by 

F = V(m2-curl A1) = 6A1" A2er (6.4) 

showing the origin of the nonlinear terms quadratic in the vector potentials, 
typical for Yang-Mills theories. 
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Table I. Hierarchical Displacement of  Einstein and Yang-Mil l s  Field Theories as Related 
to the Hierarchical Displacement of  Newton Point-Particle and Helmholtz Line- 

Vortex Dynamics.  

Newton point-particle dynamics and Kinematic Helmholtz line-vortex dynamics and 
Einstein's gravitational field theory quantities Yang-Mills field theories 

r ~ Velocity potential 
f Gauge functions 

Newtonian potential + f - V  4 Force on line vortex 
Metric tensor glk A Gauge potentials 

Force on point particle -Vd~ i ~ W = Curl A - Yang-Mills force 
Gravitational force F g ~A | A field expressed 

field expressed by by charge-space 
Christoffel symbols curvature tensor 

Einstein's field R = Curl F + 
equations expressed F Q F 
by metric-space 
curvature tensor 

Because of the analogy between magnetic fields generated by current 
filaments, and velocity fields generated by vortex filaments (first recognized 
by Helmholtz), one has for a current filament of current density j 

A= fadrr (6.5) 

and for a vortex filament of vorticity to 

' I 7 -  ,66) A = 2--~ 

From (6.5) one obtains H = curl A, and from (6.6) v = curl .~. With the 
electric current density j and vorticity to related to each other^by j = 
(c/2q-r)to, one has j  = (c/4a'r) curl curl A, and to = (1/2) curl curl A. 

The magnetic moment of a current loop of  radius R and carrying the 
current I is 

m =ITrR2/c (6.7) 

The corresponding expression for a ring vortex is obtained by making the 
substitution wr~j = I ~ r2ceo/2, where r0 is the radius of the vortex core. 
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The moment of a ring vortex therefore is 

m = ( 1 / 2 ) r ~ o ~ q r R  z (6.8) 

Inserted into (6.4), one obtains a corresponding nonlinear term quadratic in 
the vector potentials of the vortices. 

The hierarchical displacement and analogies to hydrodynamics are made 
complete by recognizing that the gauge function f is related to the velocity 
potential of an irrotational flow. A gauge transformation leaving the forces 
unchanged corresponds in the hydrodynamic picture to the addition of an 
irrotational flow field. These analogies and hierarchical displacements of 
Newtonian point mechanics and Einstein gravity versus Helmholtz's vortex 
dynamics and Yang-Mills gauge field theories are shown in Table I. 

REFERENCES 

Aharonov, Y., and Bohm, D. (1959). Physical Review, 115, 485. 
Bopp, E (1943). Annalen der Physik, 42, 572. 
Bopp, F. (1946). Zeitschriftfiir Naturforschung, 1, 53. 
Bopp, E (1948). Zeitschriftfiir Naturforschung, 3a, 564. 
Bopp, E (1949). Zeitschriftfiir Naturforschung, 4a, 611. 
Feynman, R. (1988). Superstrings, A Theory of Everything, P. C. W. Davies and J. Brown, 

eds, Cambridge University Press, Cambridge, p. 201. 
Hawking, S. W. (1978). Physical Review D, 18, 1747. 
Heisenberg, W. (1966). Introduction to the Unified Theory of Elementary Particles, Interscience, 

New York, p. 33. 
Hrnl, H., and Papapetrou, A. (1939a). Zeitschriftfiir Physik, 112, 512. 
Hrnl, H., and Papapetrou, A. (1939b). Zeitschriftfiir Physik, 114, 478. 
Hrnl, H., and Papapetrou, A. (1940). Zeitschriftfiir Physik, 116, 153. 
Hun& F. (1948). Zeitschriftfiir Physik, 124, 742. 
Sakharov, A. D. (1968). Soviet Physics Doklady, 12, 1040. 
Schrrdinger, E. (1930). Berliner Berichte, 1930, 416. 
Schrrdinger, E. (1931). Berliner Berichte, 1931, 418. 
Sommerfeld, A. (1950). Mechanics of Deformable Bodies, Academic Press, New York, pp. 

89ff, 154ff. 
Staudenmann, J. L. et al. (1980). Physical Review A, 21, 1419. 
Weinberg, S. (1989). Reviews of Modern Physics, 61, 1. 
Weinberg, S. (1992). Dreams of A Final Theory, Pantheon Books, New York. 
Wheeler, J. A. (1968). In Topics in Nonlinear Physics, N. J. Zabusky, ed., Springer, New York, 

pp. 615ff. 
Winterberg, E (1994). International Journal of Theoretical Physics, 33, 1275. 


